

Multisector dosimetric analysis to determine in-vivo dosimeter positions in prostate brachytherapy

Orla A Houlihan^{1,2}, Sergio Esteve³, Owen McLaughlin^{1,3}, Geraldine Workman³, Monica Byrne³, Kevin M Prise¹, Alan R Hounsell³, Darren M Mitchell², Suneil Jain^{1,2}

- 1. Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
- 2. Department of Clinical Oncology, Northern Ireland Cancer Centre, Belfast City Hospital, Belfast, Northern Ireland
- 3. Department of Radiotherapy Medical Physics, Northern Ireland Cancer Centre, Belfast City Hospital, Belfast, Northern Ireland

Purpose

To perform multisector dosimetric analysis to determine the optimal positions within the prostate for in vivo dosimeters, developed as part of the EU H2020 Origin project¹ to validate dose delivery and optimise low dose rate (LDR) brachytherapy delivery.²

Methods

Dosimetric data from post-implant CTs were obtained for 611 men treated with LDR prostate brachytherapy 2009-2020 at the Northern Ireland Cancer Centre. Sectors were created by dividing the prostate into three equal thirds (base/midgland/apex), then each third into four axial sectors. Axial division was performed by two separate methods; plus-shape ("+") and cross-shape ("x").³⁴

The dose to 90% of each sector (D90%) was compared to the D90% of the global prostate gland for each method.

Results

Compared to the median global D90% of 108% (interquartile range (IQR) 102-114%), the median D90% of the anterior right base was lowest (86%, IQR 77-95%) and the anterior left base was second lowest (96%, IQR 84-110%) using the plus-shaped sector division (Fig. 1), with the D90% < global D90% in 91% and 76% of cases respectively (Fig. 2).

Using the cross-shaped sector division, the median D90% of the anterior and left base were lowest at 86% (IQR 77-96%) and 96% (IQR 86-106%) respectively (Fig. 1) with the D90% < global D90% in 92% and 77% of cases respectively (Fig. 2).

The posterior right and left mid-gland sectors had the highest median D90% at 142% and 140% (IQR 130-154% and 128-153% respectively) using the plus-shaped sector division (Fig. 1), with the D90% > the global D90% in 96% of cases for both sectors (Fig. 2).

Using the cross-shaped sector division, the right and posterior mid-gland sectors received the highest median dose at 142% (IQR 131-154% and 128-155% respectively) (Fig. 1), with the D90% > global D90% in 97% and 96% of cases respectively (Fig. 2).

Conclusions

The median D90% was lowest for the anterior base sectors and highest for the posterior mid-gland sectors with a significant percentage of the D90% of these sectors < or > global D90% respectively.

Lower dose at the anterior base is particularly relevant if the dominant intraprostatic lesion is located in this region. Increased dose in the posterior mid-gland may contribute to increased rectal toxicity. Overlapping sectors with the highest differences of D90% from global D90% are appropriate locations for in-vivo dosimeters to monitor radiation dose.

64% 9% 24% 86% 66% 79% 34% 42% 96% 96% 75% 85% Base Mid-gland Apex 8% 65% 67% 23% 77% 35% 97% 85% 88% 77% 45% 96% Fig. 2. Percentage of patients for which the D90% to prostate sector

References

exceeded the global D90%.

- 1. ORIGIN 2020 Project. Available from: https://origin2020.eu
- Houlihan OA, Workman G, Hounsell AR, Prise KM, Jain S. In vivo dosimetry in pelvic brachytherapy. Br J Radiol. 2022 Sep 1;95(1137):20220046.
- Mohamed Yoosuf AB, Workman G, O'Toole MM, Straney M, Verghis R, Napier E, et al. Sector analysis of 1251 permanent prostate brachytherapy provides a rapid and effective method of evaluating and comparing pre- and post-implant dosimetry. Brachytherapy. 2013 May-Jun;12(3):254-9.
- Merrick GS, Butler WM, Grimm P, Morris M, Lief JH, Bennett A, Fiano R. Multisector prostate dosimetric quality: analysis of a large community database. Brachytherapy. 2014 Mar-Apr;13(2):146-51.

The ORIGIN project is an initiative of the Photonics Public Private Partnership (www.photonics21.org), and has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement n° 871324